Origin of the low-energy emission band in epitaxially grown para-sexiphenyl nanocrystallites.
نویسندگان
چکیده
A comparative study of steady-state and time-resolved photoluminescence of para-sexiphenyl (PSP) films grown by organic molecular beam epitaxy (OMBE) and hot wall epitaxy (HWE) under comparable conditions is presented. Using different template substrates [mica(001) and KCl(001) surfaces] as well as different OMBE growth conditions has enabled us to vary greatly the morphology of the PSP crystallites while keeping their chemical structure virtually untouched. We prove that the broad redshifted emission band has a structure-related origin rather than being due to monomolecular oxidative defects. We conclude that the growth conditions and type of template substrate impacts substantially on the film morphology (measured by atomic force microscopy) and emission properties of the PSP films. The relative intensity of the defect emission band observed in the delayed spectra was found to correlate with the structural quality of PSP crystallites. In particular, the defect emission has been found to be drastically suppressed when (i) a KCl template substrate was used instead of mica in HWE-grown films, and (ii) in the OMBE-grown films dominated by growth mounds composed of upright standing molecules as opposed to the films consisting of crystallites formed by molecules lying parallel to the substrate.
منابع مشابه
Blue emitting self-assembled nano-crystals of para-sexiphenyl grown by hot wall epitaxy
In this work we report about photoluminescence investigations and the first observation of lasing in highly ordered, crystalline parasexiphenyl (PSP) films grown by hot wall epitaxy on mica substrates. We demonstrate also the fabrication of hot wall epitaxially grown PSP layers for blue light emitting diodes. The electroluminescence (EL) shows two peaks at 425 and 450 nm, which coincide with th...
متن کاملControlling the growth mode of para-sexiphenyl (6P) on ZnO by partial fluorination.
We report on the impact of partial fluorination of para-sexiphenyl (6P) on the growth mode when deposited on the non-polar ZnO(101̄0) surface. The evolution of the thin film structure and morphology is monitored by in situ atomic force microscopy and in situ real-time X-ray scattering. Both 6P and its symmetrical, terminally fluorinated derivative (6P-F4) grow in a highly crystalline mode, howev...
متن کاملHealth Monitoring for Composite under Low-Cycle Cyclic Loading, Considering Effects of Acoustic Emission Sensor Type
Composites have been widely used in the aerospace industry. Due to the requirement of a high safety for such structures, they could be considered for health monitoring. The acoustic emission approach is one of most effective methods for identifying damages in composites. In this article, standard specimens were made from carbon fibers and the epoxy resin, with the [03/902/...
متن کاملDetermination of critical island size in para-sexiphenyl islands on SiO2 using capture-zone scaling
One of the important parameters in understanding the mechanism of the early stage of organic thin-film growth is the critical nucleus size i∗. Here, submonolayer films of para-sexiphenyl grown on amorphous silicon dioxide substrates were investigated by means of atomic-force microscopy and have been analyzed using the recently proposed capture-zone scaling. Applying the generalized Wigner surmi...
متن کاملSynthesis and Characterization of ZnO Nanostructures Grown via a Novel Atmospheric Pressure Solution Evaporation Method
In this study, a novel method called “atmospheric pressure solution evaporation (APSE)” wasdeveloped for growing of Zinc Oxide (ZnO) nanostructures on Al2O3 surface. Zinc acetate dihydrate,Polyvinyl Pyrrolidone, and deionized water were used as precursor, capping, and solvent, respectively.The growth of ZnO nanostructures from evaporated solution was performed at three temperatures of300, 400, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 130 8 شماره
صفحات -
تاریخ انتشار 2009